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Synchronization as adjustment of information rates: Detection from bivariate time series
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An information-theoretic approach for studying synchronization phenomena in experimental bivariate time
series is presented. “Coarse-grained” information rates are introduced and their ability to indicate generalized
synchronization as well as to establish a “direction of information flow” between coupled systems, i.e., to
discern the driving from the drivefresponsgsystem, is demonstrated using numerically generated time series
from unidirectionally coupled chaotic systems. The method introduced is then applied in a case study of
electroencephalogram recordings of an epileptic patient. Synchronization events leading to seizures have been
found on two levels of organization of brain tissues and “directions of information flow” among brain areas
have been identified. This allows localization of the primary epileptogenic areas, also confirmed by magnetic
resonance imaging and pasitron emission tomography scans.
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[. INTRODUCTION electroencephalograttEEG) recordings of an epileptic pa-
tient. A conclusion is given in Sec. V.
During the last decade there has been considerable inter-
est in the study of the cooperative behavior of coupled cha- Il. COARSE-GRAINED INFORMATION RATES
otic systemg1]. Synchronization phenomena have been ob- ) ) ) _
served in many physical and biological systems, even in Conilder discrete random variabl¥sand Y with sets of
cases where the chaotic nature of the scrutinized processéalues= andY, respectively, probability distribution func-
has not been proven or is in doubt, e.g., in the case of caflonS (PDF'S p(x) and p(y), and joint PDFp(x,y). The
diorespiratory synchronizatiof2,3] or synchronization of €Ntropy HX) of a single variable, sa), is defined as
neural signal§4—-7]. In such physiological and neurophysi-
ological systems it is important not only to detect synchro- H(X)=— E p(x)logp(x), (1)
nized states, but also to identify causdtive-responsere- xeE
lationships between studiggdubsystems. Although several o )
methods have been proposed and successfully applied, esgéld thejoint entropy HX,Y) of X andY is
cially in the field of neurophysiology4—7], this problem is
fgr from being trivial an'd some claims of successful dgtec— H(X,Y)=— 2~ 2 p(x,y)logp(x,y). )
tion of the causal relationships are based on contradictory XeE yey
assumption$4,5]. Also, measures of synchronization based
on infinitesimal properties and performing well on artificial The conditional entropy HY|X) of Y given X is
systems can fail when applied to noisy experimental data.
We propose to start a study of synchronization in such data
with statistical, coarse-grained measures with a basis in in-
formation theory, which could provide an indication of syn-
chronization as well as of causal relationships if present imrhe average amount of common information, contained in
the systems scrutinized. the variables< andY, is quantified by thenutual information
In Sec. Il the definitions of entropy, information, and in- [ (X;Y), defined as

formation rates are briefly reviewed. More details can be
found, e.g., in Refl8]. Then, the concept of “coarse-grained [(X;Y)=H(X)+H(Y)—H(X,Y). (4)
entropy rates,” originally introduced in Re€f12] is summa-
rized and extended by defining the coarse-grained informaFhe conditional mutual informatioh(X;Y|Z) of the vari-
tion rates(CIR’s) and their mutual and conditional versions. ablesX, Y given the variable is given as
In Sec. lll the CIR’s are applied to bivariate time series
generated by unidirectionally coupled chaotic systems [(X;Y|Z)=H(X|Z)+H(Y|Z2)-H(X,Y|Z). (5)
(Henon maps, Rssler and Lorenz systemis order to dem-
onstrate how the CIR’s can detect synchronization and driveFor Z independent oK andY we have
response relationships. An application of the approach intro-
duced is demonstrated in Sec. IV by a case study of [(X;Y]|Z)=1(X;Y). (6)

HOYX)== 2, 2 peayllogpiybo. (3
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The entropy and information are usually measured in bitue to the symmetry properties ofx;y,) the mutual CIR
if the base of the logarithms in their definitions is 2; here wei (X,Y) is symmetric, i.e.j(X,Y)=i(Y,X).
use the natural logarithm and therefore the units are called Assessing the direction of coupling between the two sys-

nats. tems, we ask how the dynamics of one of the processes, say
Now, let {X;} be a stochastic process, i.e., an indexed{X}, is influenced by the other proceSg}. For a quantita-
sequence of random variables. Its entropy {&ie tive answer to this question we propose to evaluate the con-
ditional CIRiq(X]|Y) of {X} given{Y}:
1
h= ||m—H(X1, A ,Xn), (7) 1 Tmax
oon 1 — .
n- Io(X|Y)=—— 2 10x]y), (11)
Tmax 7=1
whereH(X,, ... ,X,) is the joint entropy of the variables o . _
X1, ... X, with the joint PDFp(xy, . .. X,), is @ measure considering the usual choie,;,= A =1 sample. Recalling

of “information creation” by the proces§X;}, or the rate at  Ed. (6) we haveio(X|Y)=i(X) for {X} independent ofY},
which the process “forgets” its history. The entropy rate, in i-€., When the two systems are uncoupled. Since we prefer a
the case of dynamical systems called Kolmogorov-Sinai enmeasure that vanishes for uncoupled systéafttough then
tropy (KSE) [9-11], is a suitable tool for quantification of it can acquire both positive and negative vajege define

the dynamics of systems or processes; however, possibilities ) ) .

of its estimation from experimental data are limited to a few HXY)=1o(X[Y) =i(X). (12)
exceptional casds,11,13. Instead, Palugl2] has proposed N . .
to compute “coarse-grained entropy rateCER’S) as rela- For another approach toa d|r§0t|or.1al mformathn rate let
tive measures of information creation and of the regularityus consider the mu_tual |nfo_rmat|dr(y_,x7) measuring the
and predictability of studied processes. average amount of information contained in the prod&%s

Let {x(t)} be a time series considered as a realization of #20Ut the processX} in its future = time units ahead
stationary and ergodic stochastic proces¥(t)},t .-fu.ture herg—:-aftér This measure, however, could also con-
=1,2,3, ... In thefollowing we will denotex(t) asx and  t@in information about the-future of the procesx} con-
x(t+7) asx,. For defining the simplest form of CER we tained in this process itself if the procesg&$ and{Y} are

compute the mutual informatidrfx;x,) for all analyzed data TOt !erpendgnt, Le., if(x;y)>0. In order to obtain the
sets and find a,,,, such that forr' = 7,,,, |(x:x,)~0 for net” information about ther-future of the proces$X} con-

all the data sets. Then we define the norm of the mutua,tlained in the proces¢Y} we need the conditional mutual
information| (y;x,|x). The latter measure can also be under-

information . : . :
stood as an information-theoretic formulation of the Granger
Ar Tmax causality conceftl3]. Also, recently Schreibdil4] has pro-
H(x;x,)||= —————— 2 1(X;X,) (8) posed a “transfer entropy” which in special cases is equiva-
Tmax™ Tmint AT 757, lent to I (y;x,|X).

Next, we suml (y;x,|x) over r as above,
with 7,;,=A7=1 sample as the usual choice. The CER

h! is then defined as _ 1 Tmax
LG = —— 2 1y}, (13
ht=10x,%,)) = [[1(x; %) 9 meer

and, in order to obtain the “net asymmetric” information

It has been shown that the CER provides the same measure, we subtract the symmetric MGQIR):
classification of states of chaotic systems as the exact KSE
[12]. Since usuallyro=0 andl (x;x)=H(X), which is given (X, Y]X)=i(X,Y|X)=i(X,Y). (14
by the marginal probability distributiop(x), the sole quan-
titative descriptor of the underlying dynamics is the mutualUsing a simple manipulation we find thig(X,Y|X) is equal
information norm(8), which we will call the coarse-grained toi(X|Y), defined in Eq(12). By using two different meth-
information rate(CIR) of the procesgX(t)} and denote by 0ds we have arrived at the same measure, which we will
i(X). denote byi(X|Y) and call the coarse-grained transinforma-

Now, consider two time serigx(t)} and{y(t)} regarded tion rate(CTIR) of {X} given{Y}. Itis the average rate of the
as realizations of two processé€X(t)} and{Y(t)} which  net amount of information “transferred” from the process
represent two possibly linke@ubsystems. These two sys- {Y} to the proces$X}, or, in other words, the average rate of
tems can be characterized by their respective CiRX§ and  the net information flow by which the procep§ influences
i(Y). In order to characterize an interaction of the two sys-the procesgXj}.
tems, in analogy with the above CIR, we define their mutual
coarse-grained information ra(®CIR) lll. ANALYSIS OF DATA FROM COUPLED

CHAOTIC SYSTEMS

Tmax: T#0
i(X,Y)= > Ixy,). (10 Consider unidirectionally coupled Hen maps, similar to
2Tmax = =7max those studied i4,15], with equations
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FIG. 2. The same as in Fig. 1 but for unidirectionally coupled
nonidentical b;=0.1 andb,=0.3) Heon systems.
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COUPLING STRENGTH rises sharply at the synchronization threshold reaching the

FIG. 1. (8 The largest Lyapunov exponents of the dripg state of identical synchronization characterized by

(constant ling and the responsg} (decreasing ling (b) the CIR . . .

i(X) of the drive(dashed lingandi(Y) of the responsédash-and- HXY)=1(X)=1(Y). 17)
dotted ling and the mutual CIR(X,Y) (full line), (c) the coarse-
grained transinformation ratei{X|Y) (dashed ling and i(Y|X) o R !
(full line) for the unidirectionally coupled identicab{=b,=0.3) with |(X,Y)—m|n(|.(X),|(Y)).' .

Henon systems. The Lyapunov exponents are measured in nats per The Coarsg-gr_allned tr_ansmformatlo_n rates Start_ at Z€ro for
time unit: the CIR’s in nats. €=0, then, with increasing the CTIRi(Y|X) [full line in

Fig. 1(c)] also increases to distinctly positive values while
the CTIRi(X|Y) [dashed line in Fig. (t)] remains zero.
This result clearly indicates that the systé¢i} drives the
Xb=X, (15) system{Y}, while {X} evolves independently ofY}. This

distinction, however, ends shortly before the synchronization
threshold, when both the CTIR’s start to fall and reach the
identical synchronization state with

Note that before this triple equality is reached there is a state

X;=1.4-X5+bX,,

for the driving systen{X}, and

yi=1.4-[exyy1+(1— €)y3]+byy,,

Y2=Y1 (16) _ . L .
With emerging synchronization we lose the possibility of
for the response systefiY}. As the first example we use establishing the direction of information flow, or the causal
identical systems$;=b,=0.3. For 101 values of the cou- relationship between the systerf)} and{Y}. It is under-
pling strengthe we iterate the systen{45),(16) and compute  standable: in identical synchronization the sefie&)} and
their Lyapunov exponents and all the coarse-grained infor{y(t)} are identical and there is no possibility of establishing
mation rates defined above. The latter are computed usinifpe causal relationship betwedK} and {Y} just from the
simple box counting based on marginal equiguantizationgata.
i.e., a partition with equiprobable marginal bifk1,12,14. In the next example, consider nonidenticalida systems
The results, obtained using eight marginal bimg;,=A7  with b;=0.1 andb,=0.3. The positive LEFig. 2] of the
=1, and .= 15 samples, are illustrated in Fig. 1. The drive is again constant, while the largest LE of the response
positive Lyapunov exponer(LE) of the drive is constant, decreases with increasing and becomes negative at
while the largest LE of the responBelLE(Y) hereaftef de- =0.38. After e=0.6 it rises and touches zero arouid
creases(although not monotonicallywith increasing cou- =0.62 and then it falls again to negative values. Again,
pling strengthe [Fig. 1(a)], and fore>0.7 it remains nega- negative values of LLEY() define the synchronized states.
tive, which is an indicator of a synchronized sté@entical Now we have an example of generalized synchronization
synchronization[4]. The CIRi(X) of the drive[the dashed [1,4,19 of two nonidentical systems. The CIRX) [Fig.
line in Fig. 1(b)] is constant; the CIR(Y) of the response 2(b)] is constant, whilei(Y) reflects the development of
[dash-and-dotted line in Fig(l)] is changing and becoming LLE(Y). The mutual CIRi(X,Y) is zero fore<0.2; it then
equal toi(X) in the synchronized state. The mutual CIR rises with LLE(Y) approaching zero and the(X,Y) reflects
i(X,Y) [full line in Fig. 1(b)] is zero for small values o¢, the behavior of(Y). Since the CIR’s, like their inspiration
starts to increase as LLEJ approaches zero, and finally CER’s[12], are not dynamical invariants, in the case of gen-

(X)) =i(Y[X)==i(X)=—=i(Y)=—i(X,Y).
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eralized synchronization we cannot expect the equélify;
however, the generalized synchronization is accompanied by _
i(X,Y) rising to the values

<

R )
[=2 2\ - )

minG (X),i (Y)<i(X,Y)=maxi(X),i(Y)). (18

Y)

The CTIR’s[Fig. 2(c)] indicate the correct causal relation ¥ o4}

of {X} being a drive offY} by their relation s ozl
[(X|]Y)<i(Y]X), 19 = 0

again only before the synchronization threshold. The aboves 92}
explanation of the impossibility of inferring a causal relation ; 01}
from identical time series in the state of identical synchroni- £
zation can be generalized to time series related by a one-to
one nonlinear function, as is the case for generalized syn:
chronization.

In the following example, consider the unidirectionally ~ FIG. 3. (&) The two largest Lyapunov exponents of the drix¢

coupled Rssler and Lorenz systems described by the equaconstant linesand the responsgr} (partially decreasing lings(b)
tions the CIRi(X) of the drive(dashed lingandi(Y) of the response

(dash-and-dotted linend the mutual CIR(X,Y) (full line), (c) the
CTIR i(X]Y) (dashed lingandi(Y|X) (full line) for the Lorenz
system{Y} driven by the Resler systemX}, 8=1. The Lyapunov
exponents are measured in nats per time unit; the CIR’s in nats.

)

0.1 1 10 100 1000
COUPLING STRENGTH ¢

)‘(1: - Gf{X2+ XS},

).(2: CY{X]_"‘ 0.2(2},
IV. SYNCHRONIZATION AND INFORMATION FLOW IN

Xg=a{0.2+ X3(x, = 5.7)} (20 THE EEG OF AN EPILEPTIC PATIENT
for the autonomous Rsler system, and Synchronization on various levels of organization of brain
) tissue, from individual pairs of neurons to much larger
y1=10(—y1tY,), scales—within one area of the brain or between different
parts of the brain—is one of the most important topics in
92228y1—y2—Y1y3+ exé’, neurophysiology. Some level of synchrony is usually neces-

sary in order to attain normal neural activity, while too much
synchrony may be a pathological phenomenon such as epi-
lepsy. Detection of synchrony, or transient changes leading
to a high level of synchronization, and identification of
causal relations between drivin@ynchronizing and re-
sponse(synchronizegl components is a great challenge fac-

the case withh=6 andB=1, also studied i17]. The two I : L
) ) S g neurophysiologists and applied mathematicians and
LLE’s of both systems are depicted in FigaB(the constant physicists, since it can help in anticipating epileptic seizures

positive and zero LE of the drive and partially decreasing LE, 4 i, |ocalization of epileptogenic foci. Standard linear sta-
of the responge After e=2 the zero LE of the response prepiog '

becomes negativigrig. 3(a), note the logarithmic scaleac-
companied by a slight increase from zero values of the mu- ¢

Y3=Y1¥2— 5 V3 (21)

for the driven Lorenz system in which the equation yeris
augmented by a driving term involving. First we analyze

tual CIRi(X,Y) [Fig. 3(b)]. Then, betweer=5 ande=6, + Lt @
LLE(Y) falls to zero and(X,Y) increases sharply so that for <
negative LLE{) the condition(18) for generalized synchro- d

nization is attained. The CTIR’s start at zero values for small _
€, then correctly reflect the causal relations by their inequal-3
ity (19) which holds, again, only until the synchronized state = 04} . —
is reached. The same behavior of the CIR’s, MCIR, and= 4,1} g N e B

CTIR’s can be obtained for the case with=6 and =2 & o . . () . ‘
(Fig. 4), also studied in5,15). N P e LT
In order to summarize the numerical study, we conclude$ ©°4f A ]

that the above introduced CIR, MCIR, and CTIR can indi- < 0

iXIY)
L\V]

cate synchronizatiofidentical for the equality17) and gen- “f ©
eralized for the relatior{18)] and causal relations of drive o kol . s
and responsésubsystemgdrelation (19)]. The latter can be 0 2 4 6 8

. . . . COUPLING STRENGTH ¢
established only in states in which tHeubsystems are
coupled, but not yet fully synchronized. FIG. 4. The same as in Fig. 3, but f@r=2.
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FIG. 5. (a) An EEG segment with a short seizure, recorded from FIG. 6. The same as in Fig. 5, but for an interictal EEG segment.
leads O, (a) and RC, (b). (c) The CIR'si(T¢0,) (dashed ling
and i(F,C,) (dash-and-dotted line and the mutual CIR ) .
i(T50,,F4C,) (full line). (d) The coarse-grained transinformation develop independently and the mutual CiRI6O,,F,Cy)

ratesi (T¢0,|F,C,) (dashed lingandi(F4C4|T40,) (full line). The  retains low valuegFig. 5(c)]. At the start of the seizuréime
EEG (brain potential, in practice measured in microvolts, is here 32 se¢ the CIR’s and MCIR rise sharply, reflecting an in-

presented in arbitrary unitbins of the analog-to-digital converjer ~ crease of both local synchronIR) and synchronization
The CIR’s are in nats. between different areas of the braiMCIR). The increased

synchrony revealed by the increased information rates could

tistical methods have brought only a little success in thisalso be indicated by decreased entropy rates or decreased
area. Hope appeared in the field due to development of timédimensional complexity” measures, e.g., by the correlation
series analysis methods that originated in studies of nonlindimension. These and related dimensional and entropy mea-
ear dynamics, chaos, and chaotic synchronizatiorsures(correlation integrajshave been used recently for an-
[4-6,18,19. Here we present a case study in which theticipating approaching seizur¢$8,19. For evaluating pre-
coarse-grained information rates introduced above have bedlictive properties of CIR’s we do not have enough data yet;
applied in analysis of EEG recordings of an epileptic patientthus we proceed to the CTIR to find that in the presented

A 30 month old male patient has been suffering fromsegmeni (F,Cy|T6O,)>i(TO,|F4Cy), i.€., the information
epileptic seizures since the age of 8 months. The Sturgdlow from T¢O, to F,C, dominates over the opposite flow, or
Weber syndrome has been diagnosed because of congenitag subsysterntbrain arearepresented by the signal from the
periorbital hemangioma and leptomeningeal hemangiomas it¢ad TsO, (signal T0, for shor} drives that from EC,.
the left temporo-occipital area revealed by the magnetic reso- For comparison we present the same analysis of the same
nance imagingMRI) scan. His first EEG showed spiking in Signals but from a segments of an interictaé., far from
the left temporo-occipital area. In the beginning he had parseizure$ recording (Fig. 6). Both the CIR'si(T¢O,) and
tial complex seizures; later myoclonic-astatic seizures apt(F4C,) fluctuate on the same level, although the dependence
peared. Recently, two long-term video/EEG monitoring sesof the signals measured b§T¢O,,F,C,) is low [Fig. 6(c)].
sions were performed. The first one showed ictal onset in théhe drive-response relation cannot be unambiguously de-
left temporal lobe; the second, monitoring by scalp elecined, since the CTIR'$(TgO,|F4C,) andi(F,Cy|T¢O,) are
trodes 1.5 years later, revealed mostly generalized spikingither approximately the same or exchange their dominance
with a slight excess in the right temporo-occipital lobe. In-[Fig. 6(d)]. These results suggest that transients to seizures
terictal positron emission tomograpliyET) showed glucose are characterized by an increasing level of synchronization
hypometabolism in the left temporo-occipital lobe. A part of (both local and between argasnd an asymmetry in infor-
the most recent EEG recordings underwent synchronizatiomation flow emerges or is amplified. Considering the latter
analysis using the above CIR’s, MCIR, and CTIR’s. Theywe have found that the signak®, drove all signals from
were estimated from a 1024-sample moving windamov-  the right hemisphere and even some signals from the left
ing step 128 samples, sampling frequency 256, Hsing  central and frontal areas. Symmetrically the same has been
four marginal equiguantal binst,,=A7=1, and 7,,x  found about the signalsD;; however, there was no distinc-
=50 samples. Signals from reference and longitudibglo-  tion of causality betweengsD; and TgT;. In fact, the latter
lar) montages were analyzed. The latter gave clearer resultrove all the signals assD; did. On the other hand, there
in establishing directions of information flow, i.e., the drive- was no distinction of the information flow directiotal-
response relations using the CTIR. From a segment with ¢hough there is a nonzero dependence indicated by the
short seizure, signals from the leadgOp [Fig. 5@] and  MCIR) between laterally symmetrical leads such ag*
F,C, [Fig. 5(b)] are illustrated here. Before the seizure bothand GP,, with the one exception—D; has been found to
i(TgO,) andi(F,C,) present occasional increases, but theydrive TgO,. This analysis suggests that the primary epilepto-
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genic area is the left temporal and occipital region, whichlish drive-response relations has been demonstrated in a nu-
drives the rest of the left hemisphere and the right temporaierical study using data generated by unidirectionally
and occipital area, which secondarily drives the rest of theeoupled chaotic systems. Preliminary but promising results
right hemisphere. This is in accordance with MRI and PETfrom analysis of EEG recordings of an epileptic patient have
scan results. The driving from left temporal/occipital to right also been presented. Applications of the method have cur-
central/frontal areas, and the symmetrical one, are probablgently been extended to a larger group of epileptic patients
secondary interactions due to common dynamical compowith the aims of localization of epileptic foci and anticipa-
nents in the signals from the left and right temporal/occipitaltion of approaching seizures.

areas.
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