
PHYSICAL REVIEW E, VOLUME 63, 046211
Synchronization as adjustment of information rates: Detection from bivariate time series
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An information-theoretic approach for studying synchronization phenomena in experimental bivariate time
series is presented. ‘‘Coarse-grained’’ information rates are introduced and their ability to indicate generalized
synchronization as well as to establish a ‘‘direction of information flow’’ between coupled systems, i.e., to
discern the driving from the driven~response! system, is demonstrated using numerically generated time series
from unidirectionally coupled chaotic systems. The method introduced is then applied in a case study of
electroencephalogram recordings of an epileptic patient. Synchronization events leading to seizures have been
found on two levels of organization of brain tissues and ‘‘directions of information flow’’ among brain areas
have been identified. This allows localization of the primary epileptogenic areas, also confirmed by magnetic
resonance imaging and pasitron emission tomography scans.
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I. INTRODUCTION

During the last decade there has been considerable i
est in the study of the cooperative behavior of coupled c
otic systems@1#. Synchronization phenomena have been
served in many physical and biological systems, even
cases where the chaotic nature of the scrutinized proce
has not been proven or is in doubt, e.g., in the case of
diorespiratory synchronization@2,3# or synchronization of
neural signals@4–7#. In such physiological and neurophys
ological systems it is important not only to detect synch
nized states, but also to identify causal~drive-response! re-
lationships between studied~sub!systems. Although severa
methods have been proposed and successfully applied, e
cially in the field of neurophysiology@4–7#, this problem is
far from being trivial and some claims of successful det
tion of the causal relationships are based on contradic
assumptions@4,5#. Also, measures of synchronization bas
on infinitesimal properties and performing well on artifici
systems can fail when applied to noisy experimental d
We propose to start a study of synchronization in such d
with statistical, coarse-grained measures with a basis in
formation theory, which could provide an indication of sy
chronization as well as of causal relationships if presen
the systems scrutinized.

In Sec. II the definitions of entropy, information, and i
formation rates are briefly reviewed. More details can
found, e.g., in Ref.@8#. Then, the concept of ‘‘coarse-graine
entropy rates,’’ originally introduced in Ref.@12# is summa-
rized and extended by defining the coarse-grained infor
tion rates~CIR’s! and their mutual and conditional version
In Sec. III the CIR’s are applied to bivariate time seri
generated by unidirectionally coupled chaotic syste
~Hénon maps, Ro¨ssler and Lorenz systems! in order to dem-
onstrate how the CIR’s can detect synchronization and dr
response relationships. An application of the approach in
duced is demonstrated in Sec. IV by a case study
1063-651X/2001/63~4!/046211~6!/$20.00 63 0462
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electroencephalogram~EEG! recordings of an epileptic pa
tient. A conclusion is given in Sec. V.

II. COARSE-GRAINED INFORMATION RATES

Consider discrete random variablesX and Y with sets of
valuesJ andY, respectively, probability distribution func
tions ~PDF’s! p(x) and p(y), and joint PDFp(x,y). The
entropy H(X) of a single variable, sayX, is defined as

H~X!52 (
xPJ

p~x!log p~x!, ~1!

and thejoint entropy H(X,Y) of X andY is

H~X,Y!52 (
xPJ

(
yPY

p~x,y!log p~x,y!. ~2!

The conditional entropy H(YuX) of Y given X is

H~YuX!52 (
xPJ

(
yPY

p~x,y!log p~yux!. ~3!

The average amount of common information, contained
the variablesX andY, is quantified by themutual information
I (X;Y), defined as

I ~X;Y!5H~X!1H~Y!2H~X,Y!. ~4!

The conditional mutual informationI (X;YuZ) of the vari-
ablesX, Y given the variableZ is given as

I ~X;YuZ!5H~XuZ!1H~YuZ!2H~X,YuZ!. ~5!

For Z independent ofX andY we have

I ~X;YuZ!5I ~X;Y!. ~6!
©2001 The American Physical Society11-1
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The entropy and information are usually measured in
if the base of the logarithms in their definitions is 2; here
use the natural logarithm and therefore the units are ca
nats.

Now, let $Xi% be a stochastic process, i.e., an index
sequence of random variables. Its entropy rate@8#

h5 lim
n→`

1

n
H~X1 , . . . ,Xn!, ~7!

whereH(X1 , . . . ,Xn) is the joint entropy of then variables
X1 , . . . ,Xn with the joint PDFp(x1 , . . . ,xn), is a measure
of ‘‘information creation’’ by the process$Xi%, or the rate at
which the process ‘‘forgets’’ its history. The entropy rate,
the case of dynamical systems called Kolmogorov-Sinai
tropy ~KSE! @9–11#, is a suitable tool for quantification o
the dynamics of systems or processes; however, possibi
of its estimation from experimental data are limited to a f
exceptional cases@8,11,12#. Instead, Palusˇ @12# has proposed
to compute ‘‘coarse-grained entropy rates’’~CER’s! as rela-
tive measures of information creation and of the regula
and predictability of studied processes.

Let $x(t)% be a time series considered as a realization o
stationary and ergodic stochastic process$X(t)%,t
51,2,3,. . . . In thefollowing we will denotex(t) as x and
x(t1t) as xt . For defining the simplest form of CER w
compute the mutual informationI (x;xt) for all analyzed data
sets and find atmax such that fort8>tmax I (x;xt8)'0 for
all the data sets. Then we define the norm of the mu
information

uuI ~x;xt!uu5
Dt

tmax2tmin1Dt (
t5tmin

tmax

I ~x;xt! ~8!

with tmin5Dt51 sample as the usual choice. The CE
h1 is then defined as

h15I ~x,xt0
!2uuI ~x;xt!uu. ~9!

It has been shown that the CERh1 provides the same
classification of states of chaotic systems as the exact K
@12#. Since usuallyt050 andI (x;x)5H(X), which is given
by the marginal probability distributionp(x), the sole quan-
titative descriptor of the underlying dynamics is the mutu
information norm~8!, which we will call the coarse-graine
information rate~CIR! of the process$X(t)% and denote by
i (X).

Now, consider two time series$x(t)% and$y(t)% regarded
as realizations of two processes$X(t)% and $Y(t)% which
represent two possibly linked~sub!systems. These two sys
tems can be characterized by their respective CIR’si (X) and
i (Y). In order to characterize an interaction of the two s
tems, in analogy with the above CIR, we define their mut
coarse-grained information rate~MCIR!

i ~X,Y!5
1

2tmax
(

t52tmax

tmax ;tÞ0

I ~x;yt!. ~10!
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Due to the symmetry properties ofI (x;yt) the mutual CIR
i (X,Y) is symmetric, i.e.,i (X,Y)5 i (Y,X).

Assessing the direction of coupling between the two s
tems, we ask how the dynamics of one of the processes,
$X%, is influenced by the other process$Y%. For a quantita-
tive answer to this question we propose to evaluate the c
ditional CIR i 0(XuY) of $X% given $Y%:

i 0~XuY!5
1

tmax
(
t51

tmax

I ~x;xtuy!, ~11!

considering the usual choicetmin5Dt51 sample. Recalling
Eq. ~6! we havei 0(XuY)5 i (X) for $X% independent of$Y%,
i.e., when the two systems are uncoupled. Since we pref
measure that vanishes for uncoupled systems~although then
it can acquire both positive and negative values!, we define

i ~XuY!5 i 0~XuY!2 i ~X!. ~12!

For another approach to a directional information rate
us consider the mutual informationI (y;xt) measuring the
average amount of information contained in the process$Y%
about the process$X% in its future t time units ahead
(t-future hereafter!. This measure, however, could also co
tain information about thet-future of the process$X% con-
tained in this process itself if the processes$X% and $Y% are
not independent, i.e., ifI (x;y).0. In order to obtain the
‘‘net’’ information about thet-future of the process$X% con-
tained in the process$Y% we need the conditional mutua
informationI (y;xtux). The latter measure can also be und
stood as an information-theoretic formulation of the Gran
causality concept@13#. Also, recently Schreiber@14# has pro-
posed a ‘‘transfer entropy’’ which in special cases is equi
lent to I (y;xtux).

Next, we sumI (y;xtux) over t as above,

i 1~X,YuX!5
1

tmax
(
t51

tmax

I ~y;xtux!, ~13!

and, in order to obtain the ‘‘net asymmetric’’ informatio
measure, we subtract the symmetric MCIR~10!:

i 2~X,YuX!5 i 1~X,YuX!2 i ~X,Y!. ~14!

Using a simple manipulation we find thati 2(X,YuX) is equal
to i (XuY), defined in Eq.~12!. By using two different meth-
ods we have arrived at the same measure, which we
denote byi (XuY) and call the coarse-grained transinform
tion rate~CTIR! of $X% given$Y%. It is the average rate of the
net amount of information ‘‘transferred’’ from the proces
$Y% to the process$X%, or, in other words, the average rate
the net information flow by which the process$Y% influences
the process$X%.

III. ANALYSIS OF DATA FROM COUPLED
CHAOTIC SYSTEMS

Consider unidirectionally coupled He´non maps, similar to
those studied in@4,15#, with equations
1-2
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x1851.42x1
21b1x2 ,

x285x1 ~15!

for the driving system$X%, and

y1851.42@ex1y11~12e!y1
2#1b2y2 ,

y285y1 ~16!

for the response system$Y%. As the first example we us
identical systemsb15b250.3. For 101 values of the cou
pling strengthe we iterate the systems~15!,~16! and compute
their Lyapunov exponents and all the coarse-grained in
mation rates defined above. The latter are computed u
simple box counting based on marginal equiquantizati
i.e., a partition with equiprobable marginal bins@11,12,16#.
The results, obtained using eight marginal bins,tmin5Dt
51, and tmax515 samples, are illustrated in Fig. 1. Th
positive Lyapunov exponent~LE! of the drive is constant
while the largest LE of the response@LLE(Y) hereafter# de-
creases~although not monotonically! with increasing cou-
pling strengthe @Fig. 1~a!#, and fore.0.7 it remains nega-
tive, which is an indicator of a synchronized state~identical
synchronization! @4#. The CIR i (X) of the drive@the dashed
line in Fig. 1~b!# is constant; the CIRi (Y) of the response
@dash-and-dotted line in Fig. 1~b!# is changing and becomin
equal to i (X) in the synchronized state. The mutual C
i (X,Y) @full line in Fig. 1~b!# is zero for small values ofe,
starts to increase as LLE(Y) approaches zero, and finall

FIG. 1. ~a! The largest Lyapunov exponents of the drive$X%
~constant line! and the response$Y% ~decreasing line!, ~b! the CIR
i (X) of the drive~dashed line! and i (Y) of the response~dash-and-
dotted line! and the mutual CIRi (X,Y) ~full line!, ~c! the coarse-
grained transinformation ratesi (XuY) ~dashed line! and i (YuX)
~full line! for the unidirectionally coupled identical (b15b250.3)
Hénon systems. The Lyapunov exponents are measured in nat
time unit; the CIR’s in nats.
04621
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rises sharply at the synchronization threshold reaching
state of identical synchronization characterized by

i ~X,Y!5 i ~X!5 i ~Y!. ~17!

Note that before this triple equality is reached there is a s
with i (X,Y)5min„i (X),i (Y)….

The coarse-grained transinformation rates start at zero
e50, then, with increasinge the CTIR i (YuX) @full line in
Fig. 1~c!# also increases to distinctly positive values wh
the CTIR i (XuY) @dashed line in Fig. 1~c!# remains zero.
This result clearly indicates that the system$X% drives the
system$Y%, while $X% evolves independently of$Y%. This
distinction, however, ends shortly before the synchronizat
threshold, when both the CTIR’s start to fall and reach
identical synchronization state with

i ~XuY!5 i ~YuX!52 i ~X!52 i ~Y!52 i ~X,Y!.

With emerging synchronization we lose the possibility
establishing the direction of information flow, or the caus
relationship between the systems$X% and $Y%. It is under-
standable: in identical synchronization the series$x(t)% and
$y(t)% are identical and there is no possibility of establishi
the causal relationship between$X% and $Y% just from the
data.

In the next example, consider nonidentical He´non systems
with b150.1 andb250.3. The positive LE@Fig. 2~a!# of the
drive is again constant, while the largest LE of the respo
decreases with increasinge and becomes negative ate
50.38. After e50.6 it rises and touches zero arounde
50.62 and then it falls again to negative values. Aga
negative values of LLE(Y) define the synchronized state
Now we have an example of generalized synchronizat
@1,4,15# of two nonidentical systems. The CIRi (X) @Fig.
2~b!# is constant, whilei (Y) reflects the development o
LLE~Y!. The mutual CIRi (X,Y) is zero fore,0.2; it then
rises with LLE(Y) approaching zero and theni (X,Y) reflects
the behavior ofi (Y). Since the CIR’s, like their inspiration
CER’s @12#, are not dynamical invariants, in the case of ge

per

FIG. 2. The same as in Fig. 1 but for unidirectionally coupl
nonidentical (b150.1 andb250.3) Hénon systems.
1-3
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eralized synchronization we cannot expect the equality~17!;
however, the generalized synchronization is accompanie
i (X,Y) rising to the values

min„i ~X!,i ~Y!…< i ~X,Y!<max„i ~X!,i ~Y!…. ~18!

The CTIR’s@Fig. 2~c!# indicate the correct causal relatio
of $X% being a drive of$Y% by their relation

i ~XuY!, i ~YuX!, ~19!

again only before the synchronization threshold. The ab
explanation of the impossibility of inferring a causal relati
from identical time series in the state of identical synchro
zation can be generalized to time series related by a one
one nonlinear function, as is the case for generalized s
chronization.

In the following example, consider the unidirectional
coupled Ro¨ssler and Lorenz systems described by the eq
tions

ẋ152a$x21x3%,

ẋ25a$x110.2x2%,

ẋ35a$0.21x3~x125.7!% ~20!

for the autonomous Ro¨ssler system, and

ẏ1510~2y11y2!,

ẏ2528y12y22y1y31ex2
b ,

ẏ35y1y22 8
3 y3 ~21!

for the driven Lorenz system in which the equation forẏ2 is
augmented by a driving term involvingx2. First we analyze
the case witha56 andb51, also studied in@17#. The two
LLE’s of both systems are depicted in Fig. 3~a! ~the constant
positive and zero LE of the drive and partially decreasing
of the response!. After e52 the zero LE of the respons
becomes negative@Fig. 3~a!, note the logarithmic scale#, ac-
companied by a slight increase from zero values of the m
tual CIR i (X,Y) @Fig. 3~b!#. Then, betweene55 ande56,
LLE(Y) falls to zero andi (X,Y) increases sharply so that fo
negative LLE(Y) the condition~18! for generalized synchro
nization is attained. The CTIR’s start at zero values for sm
e, then correctly reflect the causal relations by their inequ
ity ~19! which holds, again, only until the synchronized sta
is reached. The same behavior of the CIR’s, MCIR, a
CTIR’s can be obtained for the case witha56 andb52
~Fig. 4!, also studied in@5,15#.

In order to summarize the numerical study, we conclu
that the above introduced CIR, MCIR, and CTIR can in
cate synchronization@identical for the equality~17! and gen-
eralized for the relation~18!# and causal relations of driv
and response~sub!systems@relation ~19!#. The latter can be
established only in states in which the~sub!systems are
coupled, but not yet fully synchronized.
04621
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IV. SYNCHRONIZATION AND INFORMATION FLOW IN
THE EEG OF AN EPILEPTIC PATIENT

Synchronization on various levels of organization of bra
tissue, from individual pairs of neurons to much larg
scales—within one area of the brain or between differ
parts of the brain—is one of the most important topics
neurophysiology. Some level of synchrony is usually nec
sary in order to attain normal neural activity, while too mu
synchrony may be a pathological phenomenon such as
lepsy. Detection of synchrony, or transient changes lead
to a high level of synchronization, and identification
causal relations between driving~synchronizing! and re-
sponse~synchronized! components is a great challenge fa
ing neurophysiologists and applied mathematicians
physicists, since it can help in anticipating epileptic seizu
and in localization of epileptogenic foci. Standard linear s

FIG. 3. ~a! The two largest Lyapunov exponents of the drive$X%
~constant lines! and the response$Y% ~partially decreasing lines!, ~b!
the CIR i (X) of the drive ~dashed line! and i (Y) of the response
~dash-and-dotted line! and the mutual CIRi (X,Y) ~full line!, ~c! the
CTIR i (XuY) ~dashed line! and i (YuX) ~full line! for the Lorenz
system$Y% driven by the Ro¨ssler system$X%, b51. The Lyapunov
exponents are measured in nats per time unit; the CIR’s in nat

FIG. 4. The same as in Fig. 3, but forb52.
1-4
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tistical methods have brought only a little success in t
area. Hope appeared in the field due to development of t
series analysis methods that originated in studies of non
ear dynamics, chaos, and chaotic synchroniza
@4–6,18,19#. Here we present a case study in which t
coarse-grained information rates introduced above have b
applied in analysis of EEG recordings of an epileptic patie

A 30 month old male patient has been suffering fro
epileptic seizures since the age of 8 months. The Stu
Weber syndrome has been diagnosed because of cong
periorbital hemangioma and leptomeningeal hemangioma
the left temporo-occipital area revealed by the magnetic re
nance imaging~MRI! scan. His first EEG showed spiking i
the left temporo-occipital area. In the beginning he had p
tial complex seizures; later myoclonic-astatic seizures
peared. Recently, two long-term video/EEG monitoring s
sions were performed. The first one showed ictal onset in
left temporal lobe; the second, monitoring by scalp el
trodes 1.5 years later, revealed mostly generalized spi
with a slight excess in the right temporo-occipital lobe. I
terictal positron emission tomography~PET! showed glucose
hypometabolism in the left temporo-occipital lobe. A part
the most recent EEG recordings underwent synchroniza
analysis using the above CIR’s, MCIR, and CTIR’s. Th
were estimated from a 1024-sample moving window~mov-
ing step 128 samples, sampling frequency 256 Hz!, using
four marginal equiquantal bins,tmin5Dt51, and tmax
550 samples. Signals from reference and longitudinal~bipo-
lar! montages were analyzed. The latter gave clearer res
in establishing directions of information flow, i.e., the driv
response relations using the CTIR. From a segment wi
short seizure, signals from the leads T6O2 @Fig. 5~a!# and
F4C4 @Fig. 5~b!# are illustrated here. Before the seizure bo
i (T6O2) and i (F4C4) present occasional increases, but th

FIG. 5. ~a! An EEG segment with a short seizure, recorded fro
leads T6O2 ~a! and F4C4 ~b!. ~c! The CIR’s i (T6O2) ~dashed line!
and i (F4C4) ~dash-and-dotted line! and the mutual CIR
i (T6O2 ,F4C4) ~full line!. ~d! The coarse-grained transinformatio
ratesi (T6O2uF4C4) ~dashed line! and i (F4C4uT6O2) ~full line!. The
EEG ~brain potential!, in practice measured in microvolts, is he
presented in arbitrary units~bins of the analog-to-digital converter!.
The CIR’s are in nats.
04621
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develop independently and the mutual CIRi (T6O2 ,F4C4)
retains low values@Fig. 5~c!#. At the start of the seizure~time
32 sec! the CIR’s and MCIR rise sharply, reflecting an in
crease of both local synchrony~CIR! and synchronization
between different areas of the brain~MCIR!. The increased
synchrony revealed by the increased information rates co
also be indicated by decreased entropy rates or decre
‘‘dimensional complexity’’ measures, e.g., by the correlati
dimension. These and related dimensional and entropy m
sures~correlation integrals! have been used recently for an
ticipating approaching seizures@18,19#. For evaluating pre-
dictive properties of CIR’s we do not have enough data y
thus we proceed to the CTIR to find that in the presen
segmenti (F4C4uT6O2). i (T6O2uF4C4), i.e., the information
flow from T6O2 to F4C4 dominates over the opposite flow, o
the subsystem~brain area! represented by the signal from th
lead T6O2 ~signal T6O2 for short! drives that from F4C4.

For comparison we present the same analysis of the s
signals but from a segments of an interictal~i.e., far from
seizures! recording ~Fig. 6!. Both the CIR’s i (T6O2) and
i (F4C4) fluctuate on the same level, although the depende
of the signals measured byi (T6O2 ,F4C4) is low @Fig. 6~c!#.
The drive-response relation cannot be unambiguously
fined, since the CTIR’si (T6O2uF4C4) and i (F4C4uT6O2) are
either approximately the same or exchange their domina
@Fig. 6~d!#. These results suggest that transients to seizu
are characterized by an increasing level of synchroniza
~both local and between areas! and an asymmetry in infor-
mation flow emerges or is amplified. Considering the lat
we have found that the signal T6O2 drove all signals from
the right hemisphere and even some signals from the
central and frontal areas. Symmetrically the same has b
found about the signal T5O1; however, there was no distinc
tion of causality between T5O1 and T5T3. In fact, the latter
drove all the signals as T5O1 did. On the other hand, ther
was no distinction of the information flow direction~al-
though there is a nonzero dependence indicated by
MCIR! between laterally symmetrical leads such as C3P3
and C4P4, with the one exception—T5O1 has been found to
drive T6O2. This analysis suggests that the primary epilep

FIG. 6. The same as in Fig. 5, but for an interictal EEG segme
1-5
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genic area is the left temporal and occipital region, wh
drives the rest of the left hemisphere and the right temp
and occipital area, which secondarily drives the rest of
right hemisphere. This is in accordance with MRI and P
scan results. The driving from left temporal/occipital to rig
central/frontal areas, and the symmetrical one, are prob
secondary interactions due to common dynamical com
nents in the signals from the left and right temporal/occip
areas.

V. CONCLUSION

An information-theoretic approach has been introduced
study synchronization phenomena in experimental time
ries. Its ability to detect synchronization as well as to est
o
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tt

e

y
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lish drive-response relations has been demonstrated in a
merical study using data generated by unidirectiona
coupled chaotic systems. Preliminary but promising res
from analysis of EEG recordings of an epileptic patient ha
also been presented. Applications of the method have
rently been extended to a larger group of epileptic patie
with the aims of localization of epileptic foci and anticipa
tion of approaching seizures.
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